Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6661): 949-951, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37651530

RESUMO

For the first time, ESA evaluations can include impacts on polar bears from greenhouse gas emissions.

2.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210265, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36088926

RESUMO

The marginal ice zone (MIZ) is the dynamic interface between the open ocean and sea ice-covered ocean. It is characterized by interactions between surface gravity waves and granular ice covers consisting of relatively small, thin chunks of sea ice known as floes. This structure gives the MIZ markedly different properties to the thicker, quasi-continuous ice cover of the inner pack that waves do not reach, strongly influencing various atmosphere-ocean fluxes, especially the heat flux. The MIZ is a significant component of contemporary sea ice covers in both the Antarctic, where the ice cover is surrounded by the Southern Ocean and its fierce storms, and the Arctic, where the MIZ now occupies vast expanses in areas that were perennial only a decade or two ago. The trend towards the MIZ is set to accelerate, as it reinforces positive feedbacks weakening the ice cover. Therefore, understanding the complex, multiple-scale dynamics of the MIZ is essential to understanding how sea ice is evolving and to predicting its future. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.

3.
Sci Total Environ ; 773: 145590, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940736

RESUMO

Pollen allergies have negative impacts on health. Information about airborne pollen concentration can improve symptom management by guiding choices affecting timing of medicines and pollen exposure. Observations provide accurate pollen concentrations at point locations. However, in the contiguous United States and southern Canada (CUSSC), observations are sparse, and sampling is often seasonal, intermittent or both. Modeling pollen concentration can fill in the gaps with estimates where direct observations are unavailable and also provide much-needed forecasts. The goal of this study is to develop and evaluate statistical models that predict daily pollen concentrations using a machine learning Random Forest algorithm. To evaluate our methods, we made retrospective forecasts of four pollen types (Quercus, Cupressaceae, Ambrosia and Poaceae), each in one of four CUSSC locations. Meteorological and vegetation conditions were input to the models at city and regional scales. A data augmentation technique was investigated and found to improve model skill. Models were also developed to forecast pollen in locations where there are no observations. Forecast skill in these models were found to be greater than in previous models. Nevertheless, the skill is limited by the spatiotemporal resolution of the pollen observations.


Assuntos
Alérgenos , Pólen , Canadá , Cidades , América do Norte , Estudos Retrospectivos
4.
Nat Commun ; 10(1): 14, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30600315

RESUMO

After nearly three decades of observed increasing trends of Antarctic sea ice extent, in September-October-November 2016, there was a dramatic decrease. Here we document factors that contributed to that decrease. An atmosphere-only model with a specified positive convective heating anomaly in the eastern Indian/western Pacific Ocean, representing the record positive precipitation anomalies there in September-October-November 2016, produces an anomalous atmospheric Rossby wave response with mid- and high latitude surface wind anomalies that contribute to the decrease of Antarctic sea ice extent. The sustained decreases of Antarctic sea ice extent after late 2016 are associated with a warmer upper Southern Ocean. This is the culmination of a negative decadal trend of wind stress curl with positive Southern Annular Mode and negative Interdecadal Pacific Oscillation, Ekman suction that results in warmer water being moved upward in the column closer to the surface, a transition to positive Interdecadal Pacific Oscillation around 2014-2016, and negative Southern Annular Mode in late 2016.

5.
Aerobiologia (Bologna) ; 35(4): 613-633, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31929678

RESUMO

Pollen is a common allergen that causes significant health and financial impacts on up to a third of the population of the USA. Knowledge of the main pollen season can improve diagnosis and treatment of allergic diseases. Our objective in this study is to provide clear, quantitative visualizations of pollen data and make information accessible to many disciplines, in particular to allergy sufferers and those in the health field. We use data from 31 National Allergy Bureau (NAB) pollen stations in the continental USA and Canada from 2003 to 2017 to produce pollen calendars. We present pollen season metrics relevant to health and describe main pollen season start and end dates, durations, and annual pollen integrals for specific pollen taxa. In most locations, a small number of taxa constitute the bulk of the total pollen concentration. Start dates for tree and grass pollen season depend strongly on latitude, with earlier start dates at lower latitudes. Season duration is correlated with the start dates, such that locations with earlier start dates have a longer season. NAB pollen data have limited spatiotemporal coverage. Increased spatiotemporal monitoring will improve analysis and understanding of factors that govern airborne pollen concentrations.

6.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130040, 2014 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-24891392

RESUMO

In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

7.
Science ; 341(6145): 519-24, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23908231

RESUMO

After a decade with nine of the lowest arctic sea-ice minima on record, including the historically low minimum in 2012, we synthesize recent developments in the study of ecological responses to sea-ice decline. Sea-ice loss emerges as an important driver of marine and terrestrial ecological dynamics, influencing productivity, species interactions, population mixing, gene flow, and pathogen and disease transmission. Major challenges in the near future include assigning clearer attribution to sea ice as a primary driver of such dynamics, especially in terrestrial systems, and addressing pressures arising from human use of arctic coastal and near-shore areas as sea ice diminishes.


Assuntos
Mudança Climática , Camada de Gelo , Água do Mar , Animais , Organismos Aquáticos , Regiões Árticas , Humanos , Invertebrados , Desenvolvimento Vegetal , Vertebrados
8.
Astrobiology ; 13(8): 715-39, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23855332

RESUMO

Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO(2) could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3-10 bar of CO(2) will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO(2) is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars.


Assuntos
Clima , Gelo , Modelos Teóricos , Planetas , Luz Solar , Dióxido de Carbono , Retroalimentação
9.
Nature ; 468(7326): 955-8, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21164484

RESUMO

On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout and beyond the Arctic.


Assuntos
Ecossistema , Espécies em Perigo de Extinção/tendências , Efeito Estufa/prevenção & controle , Camada de Gelo , Ursidae/fisiologia , Animais , Organismos Aquáticos , Regiões Árticas , Teorema de Bayes , Dióxido de Carbono/análise , Espécies em Perigo de Extinção/estatística & dados numéricos , Monitoramento Ambiental , Gases/análise , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Modelos Teóricos , Densidade Demográfica , Comportamento Predatório , Estações do Ano , Água do Mar/análise , Água do Mar/química , Temperatura , Termodinâmica , Fatores de Tempo
10.
Nature ; 455(7210): E3-4; discussion E4-5, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18784661

RESUMO

Arctic sea ice and snow on land have retreated polewards at an alarming pace in the past few decades. Such retreat locally amplifies surface warming through a positive feedback, which causes the Arctic surface to warm faster than the rest of the globe. In contrast, ice and snow retreat causes little warming in the atmosphere above when the stable winter atmosphere inhibits vertical heat exchange. We therefore find surprising the recent report by Graversen et al. in which they claim that recent Arctic atmospheric warming extends far deeper into the atmosphere than expected, and can even exceed the surface warming during the polar night. Using a different data set, we show that there is much less warming aloft in winter, consistent with the recent retreat of ice and snow, as well as recent changes in atmospheric heat transport.

11.
Science ; 297(5586): 1497-502, 2002 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-12202816

RESUMO

The pattern of recent surface warming observed in the Arctic exhibits both polar amplification and a strong relation with trends in the Arctic Oscillation mode of atmospheric circulation. Paleoclimate analyses indicate that Arctic surface temperatures were higher during the 20th century than during the preceding few centuries and that polar amplification is a common feature of the past. Paleoclimate evidence for Holocene variations in the Arctic Oscillation is mixed. Current understanding of physical mechanisms controlling atmospheric dynamics suggests that anthropogenic influences could have forced the recent trend in the Arctic Oscillation, but simulations with global climate models do not agree. In most simulations, the trend in the Arctic Oscillation is much weaker than observed. In addition, the simulated warming tends to be largest in autumn over the Arctic Ocean, whereas observed warming appears to be largest in winter and spring over the continents.


Assuntos
Clima Frio , Efeito Estufa , Regiões Árticas , Atmosfera , Previsões , Fenômenos Geológicos , Geologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...